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Training and Optimization of Neural
Networks and Generative
Adversarial Networks over

Distributed Resource 
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Outline

 ANN and GAN
 Training workload parallelization
 Hyper-parameters optimization
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Artificial Neural Network
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Artificial Neural Network
http://www.asimovinstitute.org/neural-network-zoo

● Large number of parameters
● Efficiently adjusted with stochastic gradient descent
● The more parameters, the more data required
● Training to convergence can take minutes to several days, ... 

http://www.asimovinstitute.org/neural-network-zoo
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Generative Adversarial Network
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A Forger's Game

● Constructed from two artificial neural networks
● Two concurrent gradient descent procedure
● Training to convergence can take minutes to several days, ... 
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GAN for CLIC

Generative adversarial network
architecture for CLIC 3D dataset 

“Images” are 3D : energy
deposition in a highly granular

calorimeter
http://cds.cern.ch/record/2254048

 

http://cds.cern.ch/record/2254048
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Training Artificial Neural Networks

● ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters

● Gradient evaluated over batch of data
➢ Too small : very noisy and scattering
➢ Too large : information dilution and slow convergence
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Distributed Training
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Parallelism Overview
➔Data distribution

Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

➔Gradient distribution
Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample ≡ large event

➔Model distribution
Compute the gradient and updates of part of the
model separately in chain. Applicable to large model
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Data
Distribution
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Data Distribution

https://arxiv.org/abs/1712.05878 

● Master node operates as parameter server
● Work nodes compute gradients
● Master handles gradients to update the central model

➔ downpour sgd https://tinyurl.com/ycfpwec5 
➔ Elastic averaging sgd https://arxiv.org/abs/1412.6651  

https://arxiv.org/abs/1712.05878
https://tinyurl.com/ycfpwec5
https://arxiv.org/abs/1412.6651
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Performance on ANN

● Speed up in training recurrent neural networks on Piz Daint
CSCS supercomputer

➔ Linear speed up with up to ~20 nodes. Bottlenecks to be
identified

➔ Needs to compensate for staleness of gradients
● Similar scaling on servers with 8 GPUs

➔ x7 speed up with students' work
● Gradient energy matching (https://arxiv.org/abs/1805.08469)

implemented to mitigate staleness of gradients

https://arxiv.org/abs/1805.08469
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Performance on GAN

● Speed up in training generative
adversarial networks on Piz Daint CSCS
and Titan ORNL supercomputers

➔ Using easgd algorithm with rmsprop
➔ Speed up is not fully efficient.

Bottlenecks to be identified

NVIDA K20 at Titan, ORNL

NVIDA P100 on Piz Daint, CSCS
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● Putting workers in several groups
● Aim at spreading communication to the main master
● Need to strike a balance between staleness and

update frequency

Sub-master Layout
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Gradient
Distribution
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● A logical worker is spawn over multiple mpi processes
● Communicator passed to horovod https://github.com/uber/horovod 
● Private horovod branch to allow for group initialization/reset
● Nvidia NCCL enabled for fast GPU-GPU communication

“all-reduce” Layout

https://github.com/uber/horovod
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Model
Distribution
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Intra-Node Model Parallelism

GPU2GPU1

● Perform the forward and backward pass of sets of layers on
different devices

● Require good device to device communication
● Utilize native tensorflow multi-device manager
● Aiming for machines with multi-gpu per node topology (summit)
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Hyper-Parameters 
Optimization
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Hyper-Parameters
● Various parameters of the model cannot be learned by

gradient descent
➢ Learning rate, batch size, number of layers, size of

kernels, …

● Tuning to the right architecture is an “art”. Can easily
spend a lot of time scanning many directions

● Full parameter scan is resource/time consuming.

➔ Hence looking for a way to reach the optimum hyper-
parameter set for a provided figure of merit (the loss by
default, but any other fom can work)

➔ Too optimization engine integrated
➢ Bayesian optimization with gaussian processes prior
➢ Evolutionary algorithm
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● One master process drives the hyper-parameter optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

Basic Layout
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Bayesian Optimization

● Objective function is
approximated as a multivariate
gaussian

● Measurements provided one by
one to improve knowledge of the
objective function

● Next best parameter to test is
determined from the acquisition
function

● Using the python implementation
from 
https://scikit-optimize.github.io 

https://tinyurl.com/yc2phuaj 

https://scikit-optimize.github.io/
https://tinyurl.com/yc2phuaj
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Evolutionary Algorithm
● Chromosomes are represented by the hyper-parameters
● Initial population taken at random in the parameter space
● Population is stepped through generations

● Select the 20% fittest solutions
● Parents of offspring selected by binary tournament based on

fitness function
● Crossover and mutate to breed offspring

●   Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function



06/04/19
Deep Learning Training & Optimization,

 J-R Vlimant, exa.trkx kick-off 25

K-Folding Cross Validation

● Estimate the performance of multiple model training over
different validation part of the training dataset

● Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...) 

● Crucial when comparing models performance
● Training on folds can proceed in parallel
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● One master running the optimization. Receiving the average  figure of
merit over N

F
 folds of the data

➢ N
G
 groups of nodes training on a parameter-set on simultaneously

➢ N
F
 groups of nodes running one fold each

K-folding Layout
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Summary and Outlook
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N
nodes

 = 1+ N
G
 x N

F
 x (N

M
 x N

W 
x N

GPU
)

N
G
 : # of concurrent hyper-parameter set tested

N
F
 : # of folds

N
M
 : # of masters

N
W
 : # of workers per master

N
GPU

 : # of nodes per worker (1node=1gpu)

Speed up and optimize models using thousand(s)
of GPUs  

Putting all Features Together
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Past, Present & Future

● Existing:
➢ Support keras+tf and pytorch
➢ GAN example
➢ Data, gradient, model distribution
➢ K-folding
➢ Hyper-opt with BO, and EA

● Recently done:
✔ Speed up performance on the master
✔ Refactor code to one package https://github.com/vlimant/NNLO 
✔ Better interface for model, data, hyper-parameters
✔ Proper logging
✔ Checkpointing for training and optimization

● Still to be done:
✗ Issue with distributed BatchNorm
✗ Seamless support of GAN models (still a little adhoc) 
✗ Characterize speed up with updated master code
✗ Characterize optimization speed-up / advantage
✗ More documentation

https://github.com/vlimant/NNLO
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Sofia V. @ https://sites.google.com/nvidia.com/ai-hpc 

Not
mpi-opt

https://sites.google.com/nvidia.com/ai-hpc
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Sofia V. @ https://sites.google.com/nvidia.com/ai-hpc 

Not
mpi-opt

https://sites.google.com/nvidia.com/ai-hpc
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● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

M
 training sub-masters

● N
W
 training workers

Sub-Master Layout
mpi-opt
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● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training worker groups

● N
GPU

 used for each worker group (either nodes or gpu)

all-reduce Layout
mpi-opt
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● One master running communication of parameter set
● N

SK
 workers running the bayesian optimization

● N
G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

mpi-skopt Setup

H-opt
worker1

H-opt
worker N

SK

mpi-opt
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